Arquitectura del Procesador II

Práctico U1.1 - Programación del MIPS

Ejercicio 1: Analice el conjunto de instrucciones del procesador MIPS. Luego, realice la traducción del siguiente código de alto nivel al lenguaje de ensamble de este procesador:

$$C = A + B;$$

 $E = D[7] - A;$
 $C = E + A * 32;$

Ejercicio 2: Traduzca el siguiente código en alto nivel al lenguaje de ensamble del MIPS:

Ejercicio 3: Traduzca el siguiente código en alto nivel al lenguaje de ensamble del MIPS:

Ejercicio 4: Traduzca el siguiente código de alto nivel al lenguaje de ensamble del MIPS:

Ejercicio 5: Para cada una de las instrucciones indique el tipo de instrucción que le corresponde y realice la codificación en lenguaje máquina:

add \$t0, \$s1, \$s2	lw \$t0, 16(\$s3)	sw \$t1, 17(\$s2)	sll \$t2, \$s0, 4	bne \$s3, \$s4, 33
j 0x1000	andi \$s3, \$s3, 1	slt \$t0, \$s3, \$s4	jr \$ra	jal 0x1000

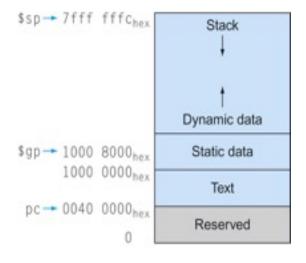
Ejercicio 6: Para cada una de las instrucciones del ejercicio anterior indique sobre el camino de datos del MIPS cuales son los caminos y las unidades funcionales utilizadas durante su ejecución.

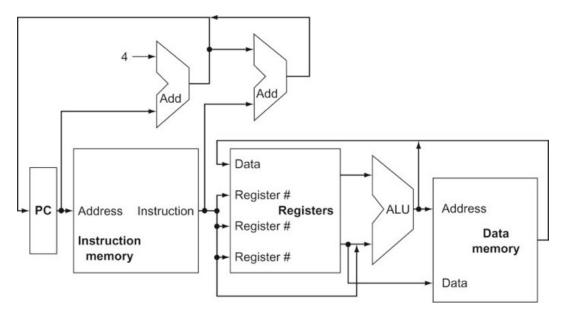
Ejercicio 7: Realice la traducción del siguiente código en alto nivel al lenguaje de ensamble del MIPS:

Ejercicio 8: Si usted necesita trabajar con una constante de más de 16 bits, por ejemplo (F1F2F3F4)₁₆, claramente no es posible colocarla dentro del valor inmediato de una instrucción aritmética o lógica, ¿Cómo resolvería esta dificultad?.

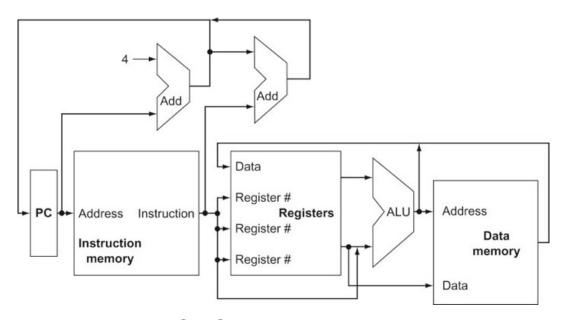
Ejercicio 9: ¿Cómo se realiza el llamado y retorno a subrutinas en el MIPS?.

Ejercicio 10: ¿Qué es una pseudoinstrucción?.


Ejercicio 11: ¿Cómo se traducen las siguientes pseudoinstrucciones?.


mov \$a0, \$a1	(Move)
li \$a1, 0xFA00	(Load Immediate)
li \$a0, 0xF000A001	(Load Immediate)
la \$t0, 0xFF00	(Load Address)
la \$t0, 0xFFFF0000	(Load Address)
lw \$t1, 0xFFFF01(\$a0)	(Load Word)

Ejercicio 12: Analizando el Datapath del Mips, responda:


- 1. ¿Cuántos bits posee el registro PC?
- 2. ¿Qué circuito es necesario para realizar la actualización del registro PC?
- 3. ¿Por qué es necesario tener 2 memorias (una de datos y otra de instrucciones)?
- 4. ¿Cómo se construye un banco de registros con dos puertos de lectura?
- 5. ¿Por qué se realiza un shift a izquierda de dos lugares al offset de las instrucciones de branch antes de ser sumado al contenido registro PC?

Ejercicio 13: En el MIPS una de las convenciones odoptadas es inicializar el registro usado como puntero global \$gp (registro 28) con el valor 0x10008000, para permitir el acceso a datos estáticos y dinámicos. Las instrucciones de acceso a memoria que usan como base \$gp pueden acceder a una porción de la memoria. Se pide especificar cuatro instrucciones load word que recuperen la palabra más alejada y la más cercana por encima y por debajo de la base \$gp.

MIPS - Camino de datos simple

MIPS - Camino de datos simple